
JOURW.AL OF COMPUTATION.~L PHYSICS 93. 477480 c 199 1) 

Note 

A Riemann Solver for “Barotro 

In 1988 Giaister [l] proposed an approximate lineariscd Riemann solver for the 
Euler equations of gas dynamics in one dimension. In certain applications, e.g flow 
of natural gas in a pipe, it is not necessary to use the full Euler equations, bu; to 
replace the energy equation by the algebraic statement of a one-to-one relationship 
between pressure and density. Some authors have used the term ‘“baroiropic” to 
describe such flows (see, cg., [a]). We note here the corresponding scheme to [ll 
for barotropic flow. 

2. EQUATIONS OF FLOW 

3.1. Equations of Motion 

The one-dimensional equations of barotropic flow can be written in conservation 
form as 

w, + f, = 0. (2.:: 

where 

w = (p. .Pu)‘r 13”) i--‘-3 

and 

The quantities ([I, U, p) = (p, U, p)(x, t) represent the density, velocity, and presstiru 
at a generai position x in space and at time t. In additron, we assume that there is 
a convex gas law relating p and p written as 

p== pip). ;2,Li,; 

We assume further that the derivative dp/dp of the gas law (2.4) can be determined. 
For a polytropic gas p = const x pm, II const. In particular, ?? = 1 gives isothermal 
flow, n = ;; = ratio of specific heat capacities of the fluid gives isentropic flow, and 
n = 2 gives equations analogous to the shailow water equations. Another interesting 
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application is that of compressible flow of water, for which the equation of state is 
sometimes approximated as 

p/p0 = 3OOl(p/p,)‘- 3000, 

where ( )0 denote STP (standard temperature and pressure) conditions (see 
Courant and Friedrichs [3]). 

2.2. Jacobian 

The Jacobian matrix A = af/a w has eigenvalues 

/ii = l4 * a, j=l,2 

with corresponding eigenvectors 

e 1,2=(1, u+a)‘, 

where the sound speed a is given by 

du 
u2=&’ 

using Eq. (2.4). 

(2.5a)-(2.5b) 

(2.6aj-(2.6b) 

(2.7) 

3. APPROXIMATE RIEMANN SOLVER 

In this section we state an approximate Riemann solver for the barotropic flow 
in one dimension with a general convex gas law. We make a brief comparison with 
the scheme of Glaister [l] for the Euler equations. 

3.1. Ft’avespeeds for Nearby States 

As in Cl], we consider the solution at any time to consist of a series of piecewise 
constant states. Our aim is then to solve each of these linearised Riemann problems 
approximately. Consider two (constant) adjacent states wL, wR (left and right) close 
to an average state w, at points L and R on an .y-coordinate line. We assume that 
we have approximate eigenvectors 

r1,2= (1, ~+_a) (3.la)-(3.lb) 

corresponding to the average state w. 
As usual we seek coefficients CI,, cz2 such that 

dw = cllrl + u2r2 (3.2a)-(3.2b) 

to within O(d’), where d( .) = (. )R - (. jL. Solving Eq. (3.2at(3.2b) we obtain 

(3.3a)-(3.3b) 
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whereas the corresponding expressions in [ I] are 

3.2. Decompositim jbr General wL, wR 

The Riemann solver is now constructed by finding average eigenvalues zi q Iz and 
corresponding average eigenvectors F, ) ?> such that 

alad 

where 

and 

(3.%-(Mb,! 

Thus, we have to determine averages fi7 ii, and 6. This type of construction was 
originally considered by Roe and Pike [43 for the Euler equations with ideal gases 
and subsequently used by Glaister [ 11 for the Euler equations with mere generzi 
equations of state. 

Solving, we find 
r- i- 

ii=\! Pi 1dL + \’ PR Lr’R 

JL+ V/L ’ 
6; Ii?) 

AP P(PRJ -P(P,) 
fi2=z= Plx-PL ’ 

bp fO, PRZPL 

(3.ii’; 

8’=$ (p) 
LP 

Ap=O, pft=pL. 

This is similar to [l], where d2 is related to the derivatives to the equation of state. 
. In practice Ap = 0 is replaced by / Apl < 30 mmq -where the integer m is machine 

dependent.) 4n addition, from Eq. (3.10) we can show that 
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so that defining the average 

simplifies the expressions in (3.9a)-(3.9b) to 

Ml.2 - - -&(E’dpipjdo). 

(3.13) 

(3.14a)-(3.14b) 

4. CONCLUSIONS 

We have given a Riemann solver similar to that of Glaister [l] that applies to 
“barotropic” flow with a general convex gas law. As usual we retain the important 
shock capturing property prevalent in this type of scheme. In particular, the scheme 
can be applied to barotropic flows where it is not necessary to use the full Euler 
equations. 
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